Differential associations between soluble cellular adhesion molecules and atherosclerosis in the Dallas Heart Study: a distinct role for soluble endothelial cell-selective adhesion molecule

Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1684-90. doi: 10.1161/ATVBAHA.109.190553.

Abstract

Objective: Endothelial cell-selective adhesion molecule (ESAM) is a junctional-type cellular adhesion molecule (CAM) that is uniquely expressed in vascular endothelium and activated platelets and mediates neutrophil and monocyte diapedesis across the endothelium. Given its role in endothelial pathobiology, we hypothesized that soluble ESAM (sESAM) would be independently associated with atherosclerosis and vascular stiffness.

Methods and results: We measured sESAM, soluble intercellular adhesion molecule (sICAM)-1, and soluble vascular cell adhesion molecule (sVCAM)-1 in 3222 subjects participating in the Dallas Heart Study, a probability-based population sample. Coronary artery calcium (CAC) was measured by electron beam computed tomography, and abdominal aortic wall thickness (AWT), aortic plaque burden (APB), and aortic compliance (AC) by MRI. Increasing levels of sESAM were associated with all major cardiovascular risk factors as well as with inflammatory markers such as monocyte chemoattractant protein-1, but only weakly correlated with sICAM-1 and sVCAM-1. In multivariate analyses, sESAM was independently associated with prevalent CAC (OR 1.2 per SD increase, 95% CI 1.1 to 1.3; P=0.005), AWT (P=0.035), and AC (P=0.006), but not APB (P=0.15). In contrast, no independent associations were observed between sICAM-1 or sVCAM-1 and any of the atherosclerosis phenotypes.

Conclusions: In this first reported clinical study of sESAM in humans, sESAM levels were independently associated with CAC, AWT, and AC, whereas sICAM-1 and sVCAM-1 were not. These findings support a unique role of this cellular adhesion molecule in atherosclerosis and suggest the need for further exploration of sESAM as a predictive biomarker and potential mediator of atherosclerosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aorta / physiology
  • Atherosclerosis / blood
  • Atherosclerosis / etiology*
  • Calcium / blood
  • Cell Adhesion Molecules / blood
  • Cell Adhesion Molecules / physiology*
  • Compliance
  • Female
  • Humans
  • Intercellular Adhesion Molecule-1 / blood
  • Male
  • Middle Aged
  • Multivariate Analysis
  • Risk Factors
  • Vascular Cell Adhesion Molecule-1 / blood

Substances

  • Cell Adhesion Molecules
  • Vascular Cell Adhesion Molecule-1
  • Intercellular Adhesion Molecule-1
  • Calcium