Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson's disease mouse model, we investigated protein expression changes associated with the action of electroacupuncture (EA) in the mouse striatum. Twelve-week-old male C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days, and the 100-Hz EA stimulation was performed at GB34 and GB39 once a day for 12 days consecutively from the first injection. With the EA, the MPTP-induced dopaminergic neuronal destruction was reduced. Of the 13 proteins that were differentially expressed between control and MPTP treated mice, cytosolic malate dehydrogenase, munc18-1, and hydroxyacylglutathione hydrolase, which were increased by MPTP, and cytochrome c oxidase subunit Vb, which was decreased by MPTP, were restored to the level of the saline group after EA treatment. These proteins are likely related to cellular metabolism. Altogether, we propose that the EA may exert neuroprotective effects in mice striatum through reducing MPTP-induced toxicity such as oxidative stress.