miR-155 inhibition sensitizes CD4+ Th cells for TREG mediated suppression

PLoS One. 2009 Sep 24;4(9):e7158. doi: 10.1371/journal.pone.0007158.

Abstract

Background: In humans and mice naturally occurring CD4(+)CD25(+) regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.

Principal findings: DNA-Microarray analyses of human as well as murine conventional CD4(+) Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-isolated human and mouse primary CD4(+) Th cells and nTregs and investigated the resulting phenotype in nTreg suppression assays. Whereas miR-155 inhibition in conventional CD4(+) Th cells strengthened nTreg cell-mediated suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression.

Conclusion: Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4(+) Th cells to nTreg cell-mediated suppression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology
  • CD4-Positive T-Lymphocytes / metabolism*
  • Forkhead Transcription Factors / metabolism
  • Humans
  • Immune Tolerance
  • Immunity, Innate
  • Interleukin-2 Receptor alpha Subunit / biosynthesis
  • Kinetics
  • Mice
  • MicroRNAs / metabolism*
  • Models, Biological
  • Oligonucleotide Array Sequence Analysis
  • T-Lymphocytes, Regulatory / immunology
  • T-Lymphocytes, Regulatory / metabolism*
  • Up-Regulation

Substances

  • FOXP3 protein, human
  • Forkhead Transcription Factors
  • Foxp3 protein, mouse
  • Interleukin-2 Receptor alpha Subunit
  • MIRN155 microRNA, human
  • MicroRNAs