Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide

Phys Rev Lett. 2009 Aug 28;103(9):095003. doi: 10.1103/PhysRevLett.103.095003. Epub 2009 Aug 27.

Abstract

We report experimental observation of narrow-band coherent Cherenkov radiation driven by a subpicosecond electron bunch traveling along the axis of a hollow cylindrical dielectric-lined waveguide. For an appropriate choice of dielectric wall thickness, a short-pulse beam current profile excites only the fundamental mode of the structure, producing energetic pulses in the terahertz range. We present detailed measurements showing a narrow emission spectrum peaked at 367 + or - 3 GHz from a 1 cm long fused silica capillary tube with submillimeter transverse dimensions, closely matching predictions. We demonstrate a 100 GHz shift in the emitted central frequency when the tube wall thickness is changed by 50 microm. Calibrated measurements of the radiated energy indicate up to 10 microJ per 60 ps pulse for an incident beam charge of 200 pC, corresponding to a peak power of approximately 150 kW.