Using a mouse model of coxsackievirus B4 (CVB4-V)-induced chronic pancreatitis, we investigated whether cytokines are involved in the progression of acute disease to chronic inflammatory disease. We show that IL-10 contributed to the development of chronic pancreatitis since acute disease resolved when IL-10 was absent or when IL-10 signaling was disrupted. We explored the underlying mechanisms by which IL-10 affected disease progression, using a novel approach to assess immunological events occurring in situ. Multiple markers that define functional innate immune responses and functional T cell responses were monitored over the course of CVB4-V infection of wild-type and IL-10 knockout mice, using a multiplex transcriptional profiling approach. We show that high levels of IL-10 early during infection were associated with delayed innate and T cell responses. Furthermore, high IL-10 production correlated with altered kinetics of T regulatory responses indicating a disruption in the balance between effector and regulatory T cell responses.