Implant heating has been advocated as a means to alter the porosity of the bone cement/implant interface; however, little is known about the influence on cement properties. This study investigates the mechanical properties and pore distribution of 10 commercially available cements cured in molds at 20, 37, 40 and 50 degrees Celsius. Although each cement reacted differently to the curing environments, the most prevalent trend was increased mechanical properties when cured at 50 degrees Celsius vs. room temperature. Pores were shown to gather near the surface of cooler molds and near the center in warmer molds for all cement brands. Pore size was also influenced. Small pores were more often present in cements cured at cooler temperatures, with higher-temperature molds producing more large pores. The mechanical properties of all cements were above the minimum regulatory standards. This work shows the influence of curing temperature on cement properties and porosity characteristics, and supports the practice of heating cemented implants to influence interfacial porosity.
Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.