Background: In heart failure, brain-type natriuretic peptide (BNP) is elevated and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) downregulated. We previously showed that preload-induced SERCA-upregulation is suppressed by exogenous BNP.
Methods and results: Here we tested the hypothesis that afterload and neurohumoral activation would counterregulate preload-dependent SERCA upregulation through BNP, which finally results in decreased SERCA levels. We studied the effects of 6 hours preload, afterload, and isoproterenol stimulation on BNP and SERCA mRNA expression in rabbit and human failing muscles strips. Preload resulted in a pronounced upregulation of SERCA by 149% (isotonic versus slack, P<0.01). This upregulation was largely suppressed in afterloaded muscles (isometric versus slack: +32%; P<0.05). Similarly, presence of isoproterenol prevented SERCA upregulation in isotonic muscles. Afterload and isoproterenol resulted in a pronounced increase in BNP expression compared with slack by 225% (P<0.05) and 198% (P<0.01), respectively. Isoproterenol also increased expression of phospholamban by 84% (P<0.01). SERCA upregulation in preloaded muscles is associated with frequency-dependent potentiation of contractile force, which is absent in afterloaded muscles. In failing human myocardium, BNP expression was upregulated compared with nonfailing (+631%; P<0.05). Neither unloading nor preload or afterload induced a change in SERCA or BNP expression after 6 hours.
Conclusions: Afterload and neuroendocrine stimulation increase BNP expression thereby causing inhibition of preload-dependent SERCA upregulation. In failing human myocardium, high BNP expression may underlie the loss of preload-dependent upregulation of SERCA. BNP may thus contribute to adverse myocardial remodelling in heart failure.