AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply

Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17781-6. doi: 10.1073/pnas.0909873106. Epub 2009 Oct 6.

Abstract

AMP-activated protein kinase (AMPK) senses changes in the intracellular AMP/ATP ratio, switching off energy-consuming processes and switching on catabolic pathways in response to energy depletion. Here, we show that AMPK down-regulates rRNA synthesis under glucose restriction by phosphorylating the RNA polymerase I (Pol I)-associated transcription factor TIF-IA at a single serine residue (Ser-635). Phosphorylation by AMPK impairs the interaction of TIF-IA with the TBP-containing promoter selectivity factor SL1, thereby precluding the assembly of functional transcription initiation complexes. Mutation of Ser-635 compromises down-regulation of Pol I transcription in response to low energy supply, supporting that activation of AMPK adapts rRNA synthesis to nutrient availability and the cellular energy status.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / metabolism*
  • Adenosine Triphosphate / metabolism
  • Animals
  • Cell Line
  • Energy Metabolism
  • Glucose / metabolism
  • Humans
  • Mice
  • Models, Biological
  • NIH 3T3 Cells
  • Phosphorylation
  • Pol1 Transcription Initiation Complex Proteins / antagonists & inhibitors
  • Pol1 Transcription Initiation Complex Proteins / chemistry
  • Pol1 Transcription Initiation Complex Proteins / genetics
  • Pol1 Transcription Initiation Complex Proteins / metabolism
  • RNA Polymerase I / metabolism
  • RNA, Ribosomal / biosynthesis*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Serine / chemistry
  • Transcription, Genetic

Substances

  • Pol1 Transcription Initiation Complex Proteins
  • RNA, Ribosomal
  • RRN3 protein, human
  • Recombinant Proteins
  • TAF1B protein, human
  • Serine
  • Adenosine Triphosphate
  • AMP-Activated Protein Kinases
  • RNA Polymerase I
  • Glucose