Bryophytes as the first land plants are believed to have colonized the land from a fresh water origin, requiring adaptive mechanisms that survival of dehydration. Physcomitrella patens is such a non-vascular bryophyte and shows rare desiccation tolerance in its vegetative tissues. Previous studies showed that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling and microtubule depolymerization. And proteomic alteration supported the cellular structural changes in respond to desiccation stress. In this addendum, we report that Golgi bodies are absent and adaptor protein complex AP-1 large subunit is downregulated during the course of dehydration. Those phenomena may be adverse in protein posttranslational modification, protein sorting and cell walls synthesis under the desiccation condition.