Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel

J Biol Chem. 2009 Dec 18;284(51):35495-506. doi: 10.1074/jbc.M109.072678.

Abstract

In cystic fibrosis (CF), dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel disrupts epithelial ion transport and perturbs the regulation of intracellular pH (pH(i)). CFTR modulates pH(i) through its role as an ion channel and by regulating transport proteins. However, it is unknown how CFTR senses pH(i). Here, we investigate the direct effects of pH(i) on recombinant CFTR using excised membrane patches. By altering channel gating, acidic pH(i) increased the open probability (P(o)) of wild-type CFTR, whereas alkaline pH(i) decreased P(o) and inhibited Cl(-) flow through the channel. Acidic pH(i) potentiated the MgATP dependence of wild-type CFTR by increasing MgATP affinity and enhancing channel activity, whereas alkaline pH(i) inhibited the MgATP dependence of wild-type CFTR by decreasing channel activity. Because these data suggest that pH(i) modulates the interaction of MgATP with the nucleotide-binding domains (NBDs) of CFTR, we examined the pH(i) dependence of site-directed mutations in the two ATP-binding sites of CFTR that are located at the NBD1:NBD2 dimer interface (site 1: K464A-, D572N-, and G1349D-CFTR; site 2: G551D-, K1250M-, and D1370N-CFTR). Site 2 mutants, but not site 1 mutants, perturbed both potentiation by acidic pH(i) and inhibition by alkaline pH(i), suggesting that site 2 is a critical determinant of the pH(i) sensitivity of CFTR. The effects of pH(i) also suggest that site 2 might employ substrate-assisted catalysis to ensure that ATP hydrolysis follows NBD dimerization. We conclude that the CFTR Cl(-) channel senses directly pH(i). The direct regulation of CFTR by pH(i) has important implications for the regulation of epithelial ion transport.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / genetics
  • Adenosine Triphosphate / metabolism*
  • Amino Acid Substitution
  • Cell Membrane / genetics
  • Cell Membrane / metabolism*
  • Cystic Fibrosis / genetics
  • Cystic Fibrosis / metabolism
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Epithelial Cells / metabolism*
  • HeLa Cells
  • Humans
  • Hydrogen-Ion Concentration
  • Ion Transport / genetics
  • Mutagenesis, Site-Directed
  • Mutation, Missense
  • Protein Structure, Tertiary
  • Recombinant Proteins

Substances

  • CFTR protein, human
  • Recombinant Proteins
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Adenosine Triphosphate