Natural genetic variability at the pol gene may account for differences in drug susceptibility and selection of resistance patterns across HIV-1 clades. Spread of non-B subtypes along with changes in antiretroviral drug use may have modified drug resistance patterns in recent years. All HIV-1 clinical samples sent to a reference laboratory located in Madrid for drug resistance testing since January 2000 were analyzed. The pol gene was sequenced and HIV-1 subtypes were assigned using the Stanford algorithm and phylogenetic analyses for non-B subtypes. Drug resistance mutations were recorded using the IAS-USA mutation list (April 2008). A total of 3034 specimens from 730 antiretroviral-naive individuals (92 with non-B subtypes) and 1569 antiretroviral-experienced patients (97 with non-B subtypes) were examined. The prevalence of HIV-1 non-B subtypes in the study period increased from 4.4% (2000-2003) to 10.1% (2004-2007) (p < 0.01). The most predominant variants were CRF02_AG (41.8%) and G (17.5%). Thymidine analogue mutations (TAMs) were more prevalent in B than non-B subtypes, in both drug-naive (6.2% vs. 1%; p < 0.01) and treatment-experienced patients (49% vs. 30%, p < 0.01). K103N was most frequent in B than non-B subtypes (34% vs. 21%; p < 0.01); conversely, 106A/M was more prevalent in non-B than B clades (11% vs. 5%). Codon 179 mutations associated with etravirine resistance were more frequent in non-B than B subtypes. Finally, secondary protease resistance mutations were more common in non-B than B clades, with a potentially significant impact at least on tipranavir. The prevalence of HIV-1 non-B subtypes has increased since the year 2000 in a large drug resistance database in Spain, determining changes in drug resistance patterns that may influence the susceptibility to new antiretroviral drugs and have an impact on genotypic drug resistance interpretation algorithms.