Serotonergic mechanisms on breathing modulation in the rat locus coeruleus

Pflugers Arch. 2010 Feb;459(3):357-68. doi: 10.1007/s00424-009-0741-4. Epub 2009 Oct 21.

Abstract

The locus coeruleus (LC) is a noradrenergic nucleus that plays an important role in the ventilatory response to hypercapnia. This nucleus is densely innervated by serotonergic fibers and contains high density of serotonin (5-HT) receptors, including 5-HT(1A) and 5-HT(2). We assessed the possible modulation of respiratory response to hypercapnia by 5-HT, through 5-HT(1A) and 5-HT(2) receptors, in the LC. To this end, we determined the concentrations of 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the LC after hypercapnic exposure. Pulmonary ventilation (VE: , plethysmograph) was measured before and after unilateral microinjection (100 nL) of WAY-100635 (5-HT(1A) antagonist, 5.6 and 56 mM), 8-OHDPAT (5-HT(1A/7) agonist, 7 and 15 mM), Ketanserin (5-HT(2A) antagonist, 3.7 and 37 mM), or (+/-)-2,5-dimethoxy-4-iodoamphetaminehydrochloride (DOI; 5-HT(2A) agonist, 6.7 and 67 mM) into the LC, followed by a 60-min period of 7% CO(2) exposure. Hypercapnia increased 5-HTIAA levels and 5-HIAA/5-HT ratio within the LC. WAY-100635 and 8-OHDPAT intra-LC decreased the hypercapnic ventilatory response due to a lower tidal volume. Ketanserin increased CO(2) drive to breathing and DOI caused the opposite response, both acting on tidal volume. The current results provide evidence of increased 5-HT release during hypercapnia in the LC and that 5-HT presents an inhibitory modulation of the stimulatory role of LC on hypercapnic ventilatory response, acting through postsynaptic 5-HT(2A) receptors in this nucleus. In addition, hypercapnic responses seem to be also regulated by presynaptic 5-HT(1A) receptors in the LC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 8-Hydroxy-2-(di-n-propylamino)tetralin / pharmacology
  • Adrenergic alpha-Antagonists / pharmacology
  • Amphetamines / pharmacology
  • Animals
  • Hydroxyindoleacetic Acid / metabolism
  • Hypercapnia / metabolism
  • Idazoxan / pharmacology
  • Ketanserin / pharmacology
  • Locus Coeruleus / cytology
  • Locus Coeruleus / drug effects
  • Locus Coeruleus / metabolism*
  • Male
  • Microinjections
  • Piperazines / pharmacology
  • Pulmonary Ventilation / physiology*
  • Pyridines / pharmacology
  • Rats
  • Rats, Wistar
  • Receptor, Serotonin, 5-HT1A / metabolism
  • Receptor, Serotonin, 5-HT2A / metabolism
  • Respiration*
  • Serotonin / metabolism*
  • Serotonin 5-HT1 Receptor Agonists
  • Serotonin 5-HT1 Receptor Antagonists
  • Serotonin 5-HT2 Receptor Agonists
  • Serotonin 5-HT2 Receptor Antagonists
  • Serotonin Antagonists / pharmacology
  • Serotonin Receptor Agonists / pharmacology

Substances

  • Adrenergic alpha-Antagonists
  • Amphetamines
  • Piperazines
  • Pyridines
  • Receptor, Serotonin, 5-HT2A
  • Serotonin 5-HT1 Receptor Agonists
  • Serotonin 5-HT1 Receptor Antagonists
  • Serotonin 5-HT2 Receptor Agonists
  • Serotonin 5-HT2 Receptor Antagonists
  • Serotonin Antagonists
  • Serotonin Receptor Agonists
  • Receptor, Serotonin, 5-HT1A
  • Serotonin
  • Hydroxyindoleacetic Acid
  • N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl)cyclohexanecarboxamide
  • 8-Hydroxy-2-(di-n-propylamino)tetralin
  • Ketanserin
  • 4-iodo-2,5-dimethoxyphenylisopropylamine
  • Idazoxan