The white gene, which is responsible for eye pigmentation, is widely used to study position effects in Drosophila. As a result of insertion of P-element vectors containing mini-white without enhancers into random chromosomal sites, flies with different eye color phenotypes appear, which is usually explained by the influence of positive/negative regulatory elements located around the insertion site. We found that, in more than 70% of cases when mini-white expression was subject to positive position effects, deletion of the white promoter had no effect on eye pigmentation; in these cases, the transposon was inserted into the transcribed regions of genes. Therefore, transcription through the mini-white gene could be responsible for high levels of its expression in most of chromosomal sites. Consistently with this conclusion, transcriptional terminators proved to be efficient in protecting mini-white expression from positive position effects. On the other hand, the best characterized Drosophila gypsy insulator was poorly effective in terminating transcription and, as a consequence, only partially protected mini-white expression from these effects. Thus, to ensure maximum protection of a transgene from position effects, a perfect boundary/insulator element should combine three activities: to block enhancers, to provide a barrier between active and repressed chromatin, and to terminate transcription.