Background: Little is known about the genetic factors that contribute to nasal polyposis (NP). A genome-wide association study identified 10 single nucleotide polymorphisms (SNPs) associated with eosinophilia. As eosinophils play a key role in the pathogenesis of NP, we assessed if any of these SNPs contribute to genetic susceptibility of NP.
Methods: We recruited 284 patients with NP in four participating hospitals in Belgium and 427 healthy controls, and genotyped 10 SNPs affecting eosinophilia (rs1420101 in IL1RL1, rs12619285 in IKZF2, rs4431128 in GATA2, rs4143832 in IL5, rs3184504 in SH2B3, rs2416257 in WDR36, rs2269426 in MHC, rs9494145 in MYB, rs748065 in GFRA2, and rs3939286 in IL33) using MALDI-TOF. A two-stage design was used while correcting for multiple testing.
Results: First stage analysis, involving 150 NP patients and 250 controls, identified rs3939286 nearby IL33 as a susceptibility factor for NP. Per at-risk A-allele, rs3939286 increased the risk for NP with an odds ratio (OR) of 1.60 (95% CI = 1.16-2.22; P = 0.0041). Second stage replication analysis in another 123 NP patients and 165 controls confirmed this association (OR = 1.43; CI = 1.00-2.06; P = 0.046). The combined analysis of both stages revealed an OR of 1.53 (CI = 1.21-1.96; P = 0.00041). Given the association of IL33 with NP, we also investigated rs1420101 in IL1RL1, which is the receptor for IL33. Although rs1420101 itself failed to associate with NP, a combined risk assessment of rs3939286 and rs1420101 further increased the risk for NP.
Conclusion: We provide unprecedented genetic evidence suggesting a role for the IL33 pathway in the pathogenesis of NP.