We investigated the fringe visibility produced by a Mach-Zehnder interferometer illuminated by a collisionally pumped yttrium x-ray laser operating at 15.5 nm. Fringe visibility varied as a function both of relative path delay and of relative spatial overlap of the beams. This visibility information was extracted quantitatively from several interferograms and analyzed to produce a characterization of the temporal coherence, yielding a gain-narrowed linewidth of 1.3 pm for the 15.5-nm laser transition and spatial coherence consistent with an effective source size of approximately 220 microm +/- 50% at the x-ray laser output.