Amyloid-like self-assembly of peptide sequences from the adenovirus fiber shaft: insights from molecular dynamics simulations

J Phys Chem B. 2009 Nov 26;113(47):15639-47. doi: 10.1021/jp9066718.

Abstract

The self-assembly of peptides and proteins into nanostructures is related to the fundamental problems of protein folding and misfolding and has potential applications in medicine, materials science and nanotechnology. Natural peptides, corresponding to sequence repeats from self-assembling proteins, may constitute elementary building blocks of such nanostructures. In this work, we study by implicit-solvent replica-exchange simulations the self-assembly of two amyloidogenic sequences derived from the naturally occurring fiber shaft of the adenovirus, the octapeptide NSGAITIG (asparagine-serine-glycine-alanine-isoleucine-threonine-isoleucine-glycine) and its hexapeptide counterpart, GAITIG. In accordance with their amyloidogenic capacity, both peptides form readily intermolecular beta-sheets, stabilized by extensive main- and side-chain contacts involving the C-terminal moieties (segments 3-8 and 2-6, respectively). The structural and energetic properties of these sheets are analyzed extensively. The N-terminal residues Asn1 and Ser2 of the octapeptide remain disordered in the sheets, suggesting that these residues are exposed at the exterior of the fibrils and accessible. On the basis of insight provided by the simulations, cysteine residues were recently substituted at positions 1 and 2 of NSGAITIG; the newly designed peptides maintain their amyloidogenic properties and can bind to silver, gold and platinum nanoparticles [Kasotakis et al. Biopolymers 2009, 92, 164-172]. Computational investigation can identify suitable positions for rational modification of peptide building blocks, aiming at the fabrication of novel biomaterials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / metabolism*
  • Amino Acid Sequence
  • Amyloid / chemistry*
  • Molecular Dynamics Simulation
  • Peptides / chemistry*
  • Protein Folding
  • Protein Structure, Secondary

Substances

  • Amyloid
  • Peptides