Cortisol availability is modulated by several enzymes: 11β-HSD2, which transforms cortisol (F) to cortisone (E) and 11β-HSD1 which predominantly converts inactive E to active F. Additionally, the A-ring reductases (5α- and 5β-reductase) inactivate cortisol (together with 3α-HSD) to tetrahydrometabolites: 5αTHF, 5βTHF, and THE. The aim was to assess 11β-HSD2, 11β-HSD1, and 5β-reductase activity in hypertensive patients. Free urinary F, E, THF, and THE were measured by HPLC-MS/MS in 102 essential hypertensive patients and 18 normotensive controls. 11β-HSD2 enzyme activity was estimated by the F/E ratio, the activity of 11β-HSD1 in compare to 11β-HSD2 was inferred by the (5αTHF + 5βTHF)/THE ratio and 5β-reductase activity assessed using the E/THE ratio. Activity was considered altered when respective ratios exceeded the maximum value observed in the normotensive controls. A 15.7% of patients presented high F/E ratio suggesting a deficit of 11β-HSD2 activity. Of the remaining 86 hypertensive patients, two possessed high (5αTHF + 5βTHF)/THE ratios and 12.8% had high E/THE ratios. We observed a high percentage of alterations in cortisol metabolism at pre-receptor level in hypertensive patients, previously misclassified as essential. 11β-HSD2 and 5β-reductase decreased activity and imbalance of 11β-HSDs should be considered in the future management of hypertensive patients.