Twin and family studies reveal a significant genetic contribution to the risk of smoking initiation and progression (SI/P), nicotine dependence (ND), and smoking cessation (SC). Further, numerous genes have been implicated in these smoking-related behaviors, especially for ND. However, no study has presented a comprehensive and systematic view of the genetic factors associated with these important smoking-related phenotypes. By reviewing the literature on these behaviors, we identified 16, 99, and 75 genes that have been associated with SI/P, ND, and SC, respectively. We then determined whether these genes were enriched in pathways important in the neuronal and brain functions underlying addiction. We identified 9, 21, and 13 pathways enriched in the genes associated with SI/P, ND, and SC, respectively. Among these pathways, four were common to all of the three phenotypes, that is, calcium signaling, cAMP-mediated signaling, dopamine receptor signaling, and G-protein-coupled receptor signaling. Further, we found that serotonin receptor signaling and tryptophan metabolism pathways were shared by SI/P and ND, tight junction signaling pathway was shared by SI/P and SC, and gap junction, neurotrophin/TRK signaling, synaptic long-term potentiation, and tyrosine metabolism were shared between ND and SC. Together, these findings show significant genetic overlap among these three related phenotypes. Although identification of susceptibility genes for smoking-related behaviors is still in an early stage, the approach used in this study has the potential to overcome the hurdles caused by factors such as genetic heterogeneity and small sample size, and thus should yield greater insights into the genetic mechanisms underlying these complex phenotypes.