Changes in fMRI magnitude data and phase data observed in block-design and event-related tasks

Neuroimage. 2010 Feb 15;49(4):3149-60. doi: 10.1016/j.neuroimage.2009.10.087. Epub 2009 Nov 10.

Abstract

Functional magnetic resonance imaging (fMRI) data are acquired as a complex image pair including magnitude and phase information. The vast majority of fMRI experiments do not attempt to take advantage of the time varying phase information. The phase of the MRI signal is related to the local magnetic field changes, suggesting it may contain useful information about the source of hemodynamic activity. Analysis of phase data acquired from different fMRI experiments has shown the presence of activity in response to various stimuli. However, there have been no studies that have examined phase data in a larger group of subjects for multiple types of fMRI tasks nor have studies examined phase changes due to event-related stimuli. In this paper, we evaluate the correspondence between the magnitude and phase changes at a group level in a block-design motor tapping task and in an event-related auditory oddball task. The results for both block-design and event-related tasks indicate the presence of task-related information in the phase data with phase-only and magnitude-only approaches showing signal changes in the expected brain regions. Although there is more overall activity detected with magnitude data, the phase-only analysis also reveals activity in regions expected to be involved in the task, some of which were not significantly activated in the magnitude-only analysis, suggesting that the phase might provide some unique information. In addition, the phase can potentially increase sensitivity within regions also showing magnitude changes. Future work should focus on additional methods for combining the magnitude and phase data.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Brain / physiology*
  • Brain Mapping / methods*
  • Evoked Potentials, Auditory / physiology*
  • Evoked Potentials, Motor / physiology*
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Task Performance and Analysis*
  • Young Adult