A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable-isotope-labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were < or = 1 mol % excess (MPE), the repeatability (RSD(Aldo Intra assay and Intra day) <0.94%, RSD(5Ac Intra assay and Intra day) <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 +/- 1.3g (5Ac) vs. 26.7 +/- 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 +/- 1.3g (5Ac) vs. 22.9 +/- 1.9g (Aldo)). Finally, the pentaacetylaldononitrile derivative, used here in GC/C/IRMS for the first time, enables measurement of 2H and 13C enrichments in plasma glucose with a single sample preparation.
Copyright 2009 John Wiley & Sons, Ltd.