Nitrogen doped TiO(2)/Ti photoelectrodes were prepared by a sequence of anodization and plasma based ion implantation (PBII). The properties of this photoelectrode were characterized by scanning electronic microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), Ultra violet/visible light diffuse reflectance spectra (UV/vis/DRS), surface photovoltage (SPV), etc. Photoelectrocatalytic (PEC) performance of N-doped TiO(2)/Ti photoelectrode was tested under visible light irradiation. Their photocatalytic activity was evaluated by degradation of Rhodamine B (Rh.B). The results of XPS showed that nitrogen element was in form of three species, i.e. beta-N, molecular gamma-N and O-Ti-N, which existed in the lattices of TiO(2) and gaps between molecules. The results of UV/vis/DRS spectra and SPV revealed that proper doping of nitrogen could expand the response of photoelectrodes towards visible light and diminish the recombination of photo-generated holes and electrons, respectively. The photoelectrocatalytic activity of N-doped TiO(2)/Ti photoelectrodes was superior to those of undoped one under visible light region irradiation.
(c) 2009 Elsevier B.V. All rights reserved.