Rationale and objectives: The aim of this study was to compare tumor signal and contrast media uptake characteristics on contrast-enhanced T1-weighted sequences at 3 Tesla over 30 minutes after double-dose administration of different contrast agents in an animal model of brain glioma.
Materials and methods: Nine rats underwent magnetic resonance imaging (MRI) after stereotactic F98 glioma cell implantation before and repetitively for 30 minutes after injection of gadobutrol, gadopentetate, and gadobenate, respectively. Signal-to-noise ratio (SNR) and tumor contrast-to-noise ratio (CNR) were evaluated and MRI-derived tumor volumes were compared to histology.
Results: Postcontrast tumor SNR and CNR peaked at 4 minutes after contrast application. While contrast-enhancement within the tumor was fading, tumor volume increased by continuous contrast-uptake of peripheral parts between 4 minutes (137 + or - 29 mm(3), 126 + or - 16 mm(3), 141 + or - 24 mm(3)) and 20 minutes (182 + or - 35 mm(3), 164 + or - 32 mm(3), 191 + or - 25 mm(3)), respectively. At 8 and 12 minutes, 84% and 91% of the tumor volume were definable, respectively.
Conclusion: Optimal correlation between MRI-derived tumor volume and histology is achieved by imaging up to 20 minutes after contrast application. At 4 minutes (this delay is mostly used in clinical routine), only 75% of the enhancing tumor volume is assessable. A delay of 8 minutes already reveals 84% of the tumor and seems to be a practical clinical compromise.
Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.