Comparison between linear and daily undulating periodized resistance training to increase strength

J Strength Cond Res. 2009 Dec;23(9):2437-42. doi: 10.1519/JSC.0b013e3181c03548.

Abstract

To determine the most effective periodization model for strength and hypertrophy is an important step for strength and conditioning professionals. The aim of this study was to compare the effects of linear (LP) and daily undulating periodized (DUP) resistance training on body composition and maximal strength levels. Forty men aged 21.5 +/- 8.3 and with a minimum 1-year strength training experience were assigned to an LP (n = 20) or DUP group (n = 20). Subjects were tested for maximal strength in bench press, leg press 45 degrees, and arm curl (1 repetition maximum [RM]) at baseline (T1), after 8 weeks (T2), and after 12 weeks of training (T3). Increases of 18.2 and 25.08% in bench press 1 RM were observed for LP and DUP groups in T3 compared with T1, respectively (p < or = 0.05). In leg press 45 degrees , LP group exhibited an increase of 24.71% and DUP of 40.61% at T3 compared with T1. Additionally, DUP showed an increase of 12.23% at T2 compared with T1 and 25.48% at T3 compared with T2. For the arm curl exercise, LP group increased 14.15% and DUP 23.53% at T3 when compared with T1. An increase of 20% was also found at T2 when compared with T1, for DUP. Although the DUP group increased strength the most in all exercises, no statistical differences were found between groups. In conclusion, undulating periodized strength training induced higher increases in maximal strength than the linear model in strength-trained men. For maximizing strength increases, daily intensity and volume variations were more effective than weekly variations.

Publication types

  • Comparative Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Adolescent
  • Adult
  • Analysis of Variance
  • Arm / physiology
  • Body Composition / physiology*
  • General Adaptation Syndrome / physiopathology
  • Humans
  • Leg / physiology
  • Linear Models
  • Male
  • Muscle Strength / physiology*
  • Nonlinear Dynamics
  • Periodicity
  • Resistance Training / methods*
  • Skinfold Thickness
  • Statistics, Nonparametric
  • Time Factors
  • Young Adult