Traditionally, vaccines directly target a pathogen or microbial toxin. Lyme disease, caused by Borrelia burgdorferi, is a tick-borne illness for which a human vaccine is not currently available. B. burgdorferi binds a tick salivary protein, Salp15, during transmission from the vector, and this interaction facilitates infection of mice. We now show that Salp15 antiserum significantly protected mice from B. burgdorferi infection. Salp15 antiserum also markedly enhanced the protective capacity of antibodies against B. burgdorferi antigens, such as OspA or OspC. Mice actively immunized with Salp15 were also significantly protected from tick-borne Borrelia. In vitro assays showed that Salp15 antiserum increased the clearance of Salp15-coated B. burgdorferi by phagocytes, suggesting a mechanism of action. Vaccination with a vector molecule that a microbe requires for infection of the mammalian host suggests a new strategy for the prevention of Lyme disease, and this paradigm may be applicable to numerous arthropod-borne pathogens of medical importance.