An economical nanoarray method to electrically detect hybridization events is demonstrated. As a proof of concept, we fabricated a sensor for DNA sequencing, in which targets are oligonucleotides conjugated to gold nanoparticles. As a consequence of target-probe binding events, a conductive bridge forms between two electrodes, resulting in a quantized change in conductivity. This enables a robust detection of a few (down to single) hybridization events and can be potentially applied also to other binding events (like specific interactions between proteins, antibodies, ligands and receptors). Moreover, target amplification techniques (such as PCR) are no longer necessary.