We demonstrate herein that organic metal tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) can serve as an ideal material for source and drain electrodes to build unipolar p-type single-walled carbon nanotube (SWNTs) field-effect transistors (FETs). SWNTs were synthesized by the chemical vapor deposition (CVD) method on silicon wafer and then TTF-TCNQ was deposited by thermal evaporation through a shadow mask to form the source and drain contacts. An SiO2 layer served as the gate dielectric and Si was used as the backgate. Transfer characteristics show that these TTF-TCNQ contacted devices are Schottky barrier transistors just like conventional metal contacted SWNT-FETs. The most interesting characteristic of these SWNT transistors is that all devices demonstrate the unipolar p-type transport behavior. This behavior originates from the unique crystal structure and physical properties of TTF-TCNQ and this device may have potential applications in carbon nanotube electronics.