Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a median survival below 6 months and a 5-year survival rate below 1%. Effective therapies for locally advanced or metastatic tumours are missing and curatively resected patients relapse in over 80% of the cases. Although histone deacetylases (HDACs) are involved in the control of proliferation, apoptosis, differentiation, migration and angiogenesis of cancer cells, knowledge about the expression patterns and functions of individual HDAC isoenzymes in pancreatic cancer is sparse. This review summarizes the roles of HDACs as novel therapeutic targets and the molecular mode of action of HDAC-inhibitors (HDACI) in PDACs. Success of HDACI in clinical settings will depend on an increased knowledge of HDAC functions as well as on a better understanding of the mode of action of HDACI. Pre-clinical experimental data that constitute the basis for rational therapeutic strategies to treat PDAC are described here. Translating these rational-based therapies into the clinic will finally increase our chance to establish an effective HDACI-containing combination therapy effective against PDAC.