Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life?

Saline Syst. 2009 Nov 23:5:9. doi: 10.1186/1746-1448-5-9.

Abstract

Bacterial microorganisms that grow optimally at Na+ concentrations of 1.7 M, or the equivalent of 10% (w/v) NaCl, and greater are considered to be extreme halophiles. This review focuses on the correlation between the extent of alkaline pH and elevated temperature optima and the extent of salt tolerance of extremely halophilic eubacteria; the focus is on those with alkaline pH optima, above 8.5, and elevated temperature optima, above 50 degrees C. If all three conditions are required for optimal growth, these microorganisms are termed "poly-extremophiles". However, only a very few extreme halophiles able to grow optimally under alkaline conditions as well as at elevated temperatures have been isolated so far. Therefore the question is: do the combined extreme growth conditions of the recently isolated poly-extremophiles, i.e., anaerobic halophilic alkalithermophiles, approach a physico-chemical boundary for life? These poly-extremophiles are of interest, as their adaptive mechanisms give insight into organisms' abilities to survive in environments which were previously considered prohibitive to life, as well as to possible properties of early evolutionary and extraterrestrial life forms.