The objective of this study was to evaluate the pharmacokinetics of voriconazole and the potential correlations between pharmacokinetic parameters and patient variables in liver transplant patients on a fixed-dose prophylactic regimen. Multiple blood samples were collected within one dosing interval from 15 patients who were initiated on a prophylactic regimen of voriconazole at 200 mg enterally (tablets) twice daily starting immediately posttransplant. Voriconazole plasma concentrations were measured using high-pressure liquid chromatography (HPLC). Noncompartmental pharmacokinetic analysis was performed to estimate pharmacokinetic parameters. The mean apparent systemic clearance over bioavailability (CL/F), apparent steady-state volume of distribution over bioavailability (Vss/F), and half-life (t1/2) were 5.8+/-5.5 liters/h, 94.5+/-54.9 liters, and 15.7+/-7.0 h, respectively. There was a good correlation between the area under the concentration-time curve from 0 h to infinity (AUC0-infinity) and trough voriconazole plasma concentrations. t1/2, maximum drug concentration in plasma (Cmax), trough level, AUC0-infinity, area under the first moment of the concentration-time curve from 0 h to infinity (AUMC0-infinity), and mean residence time from 0 h to infinity (MRT0-infinity) were significantly correlated with postoperative time. t1/2, lambda, AUC0-infinity, and CL/F were significantly correlated with indices of liver function (aspartate transaminase [AST], total bilirubin, and international normalized ratio [INR]). The Cmax, last concentration in plasma at 12 h (Clast), AUMC0-infinity, and MRT0-infinity were significantly lower in the presence of deficient CYP2C19*2 alleles. Donor characteristics had no significant correlation with any of the pharmacokinetic parameters estimated. A fixed dosing regimen of voriconazole results in a highly variable exposure of voriconazole in liver transplant patients. Given that trough voriconazole concentration is a good measure of drug exposure (AUC), the voriconazole dose can be individualized based on trough concentration measurements in liver transplant patients.