Long-term spatial and temporal variations in nitrate-N concentrations along the River Derwent have been examined using Environment Agency data to investigate the relative importance of impacts of atmospheric N deposition, land use, and changes in management. Where moorland and rough grazing dominate upstream of Forge Valley and Malton, over the 20 years since 1988 mean nitrate-N concentrations were initially increasing significantly, but are now levelling off, with peaks at ca. 4.5 mg Nl(-1). As expected in a catchment in a nitrate vulnerable zone (NVZ), more agricultural land use increases mean nitrate concentrations and the occurrence of distinct winter maxima, though the latter have become markedly less pronounced since 2001. It is suggested that this improvement is a combined effect of imposition of NVZ designation in the lower reaches in 2002, animal number declines associated with the Foot & Mouth outbreak in the region in 2001, and the impact of farmers' responses to increasing fertilizer prices and to beneficial pollutant mineral N inputs from the atmosphere. Minima in nitrate-N concentrations in summer have become much less pronounced over the past decade and are typically ca. 60% higher in concentration than a decade earlier. This probably is attributable to the effects of pollutant-N leaching to depths in soil below the rooting zone when near surface biotic uptake is low in winter. The resultant N mineralization in summer enhances summer nitrate leaching. The Derwent is a relatively clean river; however, its entire catchment was designated justifiably as a NVZ in January 2009, apparently based upon a projected 95 percentile nitrate-N concentration >11.29 mg l(-1) for 2010 based upon forward projection of data from 1990 to 2004 for Derwent Bridge. A survey of water quality in March 2009 showed that some agricultural areas are still making a significant contribution to the total nitrate level well downstream, at the point responsible for implementation of NVZ status. At 3 of the 29 sites sampled, nitrate concentration exceeded 60 mg l(-1).
Copyright 2009 Elsevier B.V. All rights reserved.