A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T

Neuroimage. 2010 Feb 15;49(4):3015-26. doi: 10.1016/j.neuroimage.2009.11.054. Epub 2009 Dec 4.

Abstract

In neuroimaging, there is increasing interest in magnetization transfer (MT) techniques which yield information about bound water protons. One of the main applications is the investigation of the myelin integrity in the central nervous system (CNS). However, several problems may arise, in particular at high magnetic field strengths: B1 inhomogeneities may yield deviations of the MT saturation angle and thus non-uniformities of the measured MT ratio (MTR). This effect can be corrected for but requires in general additional time consuming B1 mapping. Furthermore, increased values of the specific absorption rate (SAR) may require a reduction of the saturation angle for individual subjects, impairing comparability of results. In this work, a B1 mapping method based on magnetization-prepared FLASH with slice selective preparation and excitation pulses and correction for relaxation effects is presented, yielding B1 maps with whole brain coverage, an in-plane resolution of 4 mm, a slice thickness of 3 mm, and a clinically acceptable duration of 46 s. The method is tested both in vitro and in vivo and applied in a subsequent in vivo study to show that MTR values in human brain tissue depend approximately linearly on the preparation angle, with a slope similar to values reported for 1.5 T. Calibration data and B1 maps are applied to B1 inhomogeneity corrections of MTR maps. Subsequently, it is shown that B1-corrected MTR maps acquired at reduced preparation angles due to individual SAR restrictions can be normalized, allowing for a direct comparison with maps acquired at the full angle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artifacts*
  • Brain / anatomy & histology*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity