STUDY DESIGN.: To examine the distribution of apoptotic cells and expression of tumor necrosis factor (TNF)-alpha and its receptors in the spinal hyperostotic mouse (twy/twy) with chronic cord compression using immunohistochemical methods. OBJECTIVE.: To study the mechanisms of apoptosis, particularly in oligodendrocytes, which could contribute to degenerative change and demyelination in chronic mechanical cord compression. SUMMARY OF BACKGROUND DATA.: TNF-alpha acts as an external signal initiating apoptosis in neurons and oligodendrocytes after spinal cord injury. Chronic spinal cord compression caused neuronal loss, myelin destruction, and axonal degeneration. However, the biologic mechanisms of apoptosis in chronically compressed spinal cord remain unclear. METHODS.: The cervical spinal cord of 34 twy mice aged 20 to 24 weeks and 11 control animals were examined. The apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) staining. The expression and the localization of TNF-alpha, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2) were examined using immunoblot and immnohistochemical analysis. RESULTS.: The number of TUNEL-positive cells in the white matter increased with the severity of compression, which was further increased bilaterally in the white matter of twy/twy mice. Double immunofluorescence staining showed that the number of cells positive for TUNEL and RIP, a marker of oligodendrocytes, increased in the white matter with increased severity of cord compression. Immunoblot analysis demonstrated overexpression of TNF-alpha, TNFR1, and TNFR2 in severe compression. The expression of TNF-alpha appeared in local cells including microglia while that of TNFR1 and TNFR2 was noted in apoptotic oligodendrocytes. CONCLUSION.: Our results suggested that the proportion of apoptotic oligodendrocytes, causing spongy axonal degeneration and demyelination, correlated with the magnitude of cord compression and that overexpression of TNF-alpha, TNFR1, and TNFR2 seems to participate in apoptosis of such cells in the chronically compressed spinal cord.