Repeat imaging data sets performed on patients with cancer are becoming publicly available. The potential utility of these data sets for addressing important questions in imaging biomarker development is vast. In particular, these data sets may be useful to help characterize the variability of quantitative parameters derived from imaging. This article reviews statistical analysis that may be performed to use results of repeat imaging to 1) calculate the level of change in parameter value that may be seen in individual patients to confidently characterize that patient as showing true parameter change, 2) calculate the level of change in parameters value that may be seen in individual patients to confidently categorize that patient as showing true lack of parameter change, 3) determine if different imaging devices are interchangeable from the standpoint of repeatability, and 4) estimate the numbers of patients needed to precisely calculate repeatability. In addition, we recommend a set of statistical parameters that should be reported when the repeatability of continuous parameters is studied.