Aims/hypothesis: Most of the known actions of angiotensin II have been considered primarily to be the result of angiotensin II subtype 1 receptor activation. However, recent data suggest that the angiotensin II subtype 2 receptor (AT(2)R) may modulate key processes linked to atherosclerosis. The aim of this study was to investigate the role of AT(2)R in diabetes-associated atherosclerosis using pharmacological blockade and genetic deficiency.
Methods: Aortic plaque deposition was assessed in streptozotocin-induced diabetic apolipoprotein E (Apoe) knockout (KO) and At ( 2 ) r (also known as Agtr2)/Apoe double-KO (DKO) mice. Control and diabetic Apoe-KO mice received an AT(2)R antagonist PD123319 (5 mg kg(-1) day(-1)) via osmotic minipump for 20 weeks (n = 7-8 per group).
Results: Diabetes was associated with a sixfold increase in plaque area (diabetic Apoe-KO: 12.7 +/- 1.4% vs control Apoe-KO: 2.3 +/- 0.4%, p < 0.001) as well as a significant increase in aortic expression of the gene At ( 2 ) r (also known as Agtr2). The increase in plaque area with diabetes was attenuated in AT(2)R antagonist-treated diabetic Apoe-KO mice (7.1 +/- 0.5%, p < 0.05) and in diabetic At ( 2 ) r/Apoe DKO mice (9.2 +/- 1.3%, p < 0.05). These benefits occurred independently of glycaemic control or BP, and were associated with downregulation of a range of pro-inflammatory cytokines, adhesion molecules, chemokines and various extracellular matrix proteins.
Conclusions/interpretation: This study provides evidence for AT(2)R playing a role in the development of diabetes-associated atherosclerosis. These findings suggest a potential utility of AT(2)R blockers in the prevention and treatment of diabetic macrovascular complications.