Background: Bone strength is currently measured with indirect techniques. We investigated the use of an intraoperative mechanical measurement for local bone strength determination and prediction of intramedullary-nail fusion failure. We investigated whether intraoperative local bone strength determination may be useful to the surgeon in predicting intramedullary nail hindfoot fusion performance.
Materials and methods: In seven human specimens, bone mineral density (BMD) was determined with qCT. A device (DensiProbe) specially devised for nailed tibiotalocalcaneal arthrodesis (TTCA) was inserted at the intended calcaneal screw sites of an intramedullary nail, and the cancellous break-away torque was measured. The constructs were then cyclically loaded to failure in dorsiflexion-plantarfexion.
Results: The BMD range was wide (42.8 to 185.9 mg HA/cm(3)). The proximal-screw site peak torque was 0.47 to 1.61 Nm; distal-screw site peak torque was 0.24 to 1.06 Nm. The number of cycles to failure correlated with peak torque both proximally (p = 0.021; r(2) = 0.69) and distally (p = 0.001; r(2) = 0.92). Proximally, peak torque did not correlate with BMD (p = 0.060; r(2) = 0.54); distally, it correlated significantly (p = 0.003; r(2) = 0.86).
Conclusion: DensiProbe measurements can be used in the hindfoot to assess bone strength. In this study, specimens that failed early could be identified. However, in clinical practice fusion failure is multifactorial in origin, and failure prediction cannot be based upon peak torque measurements alone.
Clinical relevance: The technique described here may be of use to give an intraoperative decision aid to predict intramedullary nail hindfoot fusion performance.