Propagation of epileptic spikes reconstructed from spatiotemporal magnetoencephalographic and electroencephalographic source analysis

Neuroimage. 2010 Mar;50(1):217-22. doi: 10.1016/j.neuroimage.2009.12.033. Epub 2009 Dec 16.

Abstract

The purpose of this study is to assess the accuracy of spatiotemporal source analysis of magnetoencephalography (MEG) and scalp electroencephalography (EEG) for representing the propagation of frontotemporal spikes in patients with partial epilepsy. This study focuses on frontotemporal spikes, which are typically characterized by a preceding anterior temporal peak followed by an ipsilateral inferior frontal peak. Ten patients with frontotemporal spikes on MEG/EEG were studied. We analyzed the propagation of temporal to frontal epileptic spikes on both MEG and EEG independently by using a cortically constrained minimum norm estimate (MNE). Spatiotemporal source distribution of each spike was obtained on the cortical surface derived from the patient's MRI. All patients underwent an extraoperative intracranial EEG (IEEG) recording covering temporal and frontal lobes after presurgical evaluation. We extracted source waveforms of MEG and EEG from the source distribution of interictal spikes at the sites corresponding to the location of intracranial electrodes. The time differences of the ipsilateral temporal and frontal peaks as obtained by MEG, EEG and IEEG were statistically compared in each patient. In all patients, MEG and IEEG showed similar time differences between temporal and frontal peaks. The time differences of EEG spikes were significantly smaller than those of IEEG in nine of ten patients. Spatiotemporal analysis of MEG spikes models the time course of frontotemporal spikes as observed on IEEG more adequately than EEG in our patients. Spatiotemporal source analysis may be useful for planning epilepsy surgery, by predicting the pattern of IEEG spikes.

Publication types

  • Case Reports

MeSH terms

  • Adolescent
  • Child
  • Electrodes, Implanted
  • Electroencephalography / methods*
  • Epilepsies, Partial / physiopathology*
  • Female
  • Frontal Lobe / physiopathology*
  • Humans
  • Magnetic Resonance Imaging
  • Magnetoencephalography / methods*
  • Male
  • Scalp
  • Signal Processing, Computer-Assisted*
  • Temporal Lobe / physiopathology*
  • Time Factors
  • Young Adult