Collecting data from students within classrooms or schools, and collecting data from students on multiple occasions over time, are two common sampling methods used in educational research that often require multilevel modeling (MLM) data analysis techniques to avoid Type-1 errors. The purpose of this article is to clarify the seven major steps involved in a multilevel analysis: (1) clarifying the research question, (2) choosing the appropriate parameter estimator, (3) assessing the need for MLM, (4) building the level-1 model, (5) building the level-2 model, (6) multilevel effect size reporting, and (7) likelihood ratio model testing. The seven steps are illustrated with both a cross-sectional and a longitudinal MLM example from the National Educational Longitudinal Study (NELS) dataset. The goal of this article is to assist applied researchers in conducting and interpreting multilevel analyses and to offer recommendations to guide the reporting of MLM analysis results.