In vitro, monocyte 1alpha-hydroxylase converts 25-hydroxyvitamin D [25(OH)D] to 1,25-dihydroxyvitamin D to regulate local innate immune responses, but whether 25(OH)D repletion affects vitamin D-responsive monocyte pathways in vivo is unknown. Here, we identified seven patients who had 25(OH)D insufficiency and were undergoing long-term hemodialysis and assessed changes after cholecalciferol and paricalcitol therapies in both vitamin D-responsive proteins in circulating monocytes and serum levels of inflammatory cytokines. Cholecalciferol therapy increased serum 25(OH)D levels four-fold, monocyte vitamin D receptor expression three-fold, and 24-hydroxylase expression; therapy decreased monocyte 1alpha-hydroxylase levels. The CD16(+) "inflammatory" monocyte subset responded to 25(OH)D repletion the most, demonstrating the greatest increase in vitamin D receptor expression after cholecalciferol. Cholecalciferol therapy reduced circulating levels of inflammatory cytokines, including IL-8, IL-6, and TNF. These data suggest that nutritional vitamin D therapy has a biologic effect on circulating monocytes and associated inflammatory markers in patients with ESRD.