Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer

Clin Cancer Res. 2009 Dec 15;15(24):7502-7509. doi: 10.1158/1078-0432.CCR-09-0189.

Abstract

Gefitinib and erlotinib are ATP competitive inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase and are approved around the world for the treatment of patients with non-small cell lung cancer (NSCLC). Somatic mutations in the EGFR are found in 10 to 40% of patients with NSCLC. Patients with sensitizing somatic mutations of EGFR treated with gefitinib or erlotinib have an initial clinical response of 60 to 80%, approximately twice as high as the responses associated with the administration of conventional platinum-based chemotherapy. However, the efficacy of EGFR tyrosine kinase inhibitors (TKI) is limited by either primary (de novo) or acquired resistance after therapy and investigations to define the mechanisms of resistance are active areas of ongoing preclinical and clinical studies. Primary resistance is typically caused by other somatic mutations in genes such as KRAS, which also have an impact on the EGFR signaling pathway or by mutations in the EGFR gene that are not associated with sensitivity to EGFR-TKIs. Two established mechanisms of acquired resistance are caused by additional mutations in the EGFR gene acquired during the course of treatment that change the protein-coding sequence or by amplification of another oncogene signaling pathway driven by the MET oncogene. This review focuses on characterized mechanisms of resistance to the EGFR TKIs and efforts to overcome the problem of resistance aimed at improving the therapy of patients with NSCLC. (Clin Cancer Res 2009;15(24):7502-9).