The optical properties of zinc oxide nanowires are critically influenced by the growth process. Herein, we describe a metal-organic chemical vapour deposition (MOCVD) process for the growth of ZnO nanowires with improved optical properties. A tetrahydrofuran adduct is used to control the reactivity of dimethylzinc to enable this. Vertically aligned zinc oxide nanowires have been grown on Si(111) substrates by liquid injection MOCVD, using a solution of [Me(2)Zn(tetrahydrofuran)] in the presence of oxygen. The ZnO morphology becomes nanowire-like in a narrow temperature range centred about 500 degrees C. Above and below this temperature range, the ZnO is deposited in the form of polycrystalline films. The ZnO nanowires grow from a polycrystalline nucleation layer, with the (0002) c-axis parallel to the Si[111] substrate orientation. High-resolution electron microscopy reveals a highly crystalline nanowire microstructure. Resonance enhanced ultraviolet Raman spectroscopy shows that the ratio of first- and second-order longitudinal optic modes is commensurate with electron-phonon coupling effects observed previously in ZnO nanostructures. Photoluminescence exhibits intense near band-edge emission with a full width at half-maximum of 110 meV at room temperature and shows negligible defect-related visible emission.