Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice

Cancer Res. 1991 Apr 1;51(7):1846-50.

Abstract

Phenethyl isothiocyanate (PEITC), 3-phenylpropyl isothiocyanate (PPITC), 4-phenylbutyl isothiocyanate (PBITC), and the newly synthesized 5-phenylpentyl isothiocyanate (PPeITC), 6-phenylhexyl isothiocyanate (PHITC), and 4-(3-pyridyl)butyl isothiocyanate (PyBITC) were tested for their abilities to inhibit tumorigenicity and DNA methylation induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in the lungs of A/J mice. Mice were administered isothiocyanates by gavage for 4 consecutive days at doses of 5, 1, or 0.2 mumol/day prior to administration of 10 mumol of NNK by i.p. injection. Mice were sacrificed 16 weeks after NNK administration and pulmonary adenomas were quantitated, PEITC effectively inhibited NNK-induced lung tumors at a dose of 5 mumol/day but was not inhibitory at doses of 1 or 0.2 mumol/day. PPITC, PBITC, PPeITC, and PHITC were all considerably more potent inhibitors of NNK lung tumorigenesis than PEITC. While virtually no differences in inhibitory activity could be ascertained for PPITC, PBITC, and PPeITC, PHITC appeared to be the most potent tumor inhibitor of all of the compounds. At a dose of 0.2 mumol/day, PHITC pretreatment reduced tumor multiplicity by 85%. PyBITC, an analogue of both NNK and PBITC, was ineffective as an inhibitor. Using the same protocol, the compounds were found to have qualitatively similar inhibitory effects on NNK-induced DNA methylation when administered at 1 mumol/day. These results extend our previous findings that increased alkyl chain length enhances the inhibitory activity of an arylalkyl isothiocyanate toward NNK lung tumorigenesis and demonstrate the exceptional chemopreventive potentials of two new isothiocyanates, PPeITC and PHITC.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Corn Oil / toxicity
  • Female
  • Lung Neoplasms / chemically induced*
  • Mice
  • Nitrosamines / antagonists & inhibitors*
  • Nitrosamines / toxicity
  • Structure-Activity Relationship
  • Thiocyanates / chemistry*
  • Thiocyanates / pharmacology*

Substances

  • Nitrosamines
  • Thiocyanates
  • 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone
  • Corn Oil