The p21ras GTPase-activating protein (GAP) down-regulates p21ras by stimulating its intrinsic GTPase activity. GAP is found predominantly as a monomer in the cytosol of normal cells. However, in cells expressing an activated cytoplasmic protein-tyrosine kinase, p60v-src, or stimulated with epidermal growth factor, GAP becomes phosphorylated on tyrosine and serine and forms distinct complexes with two phosphoproteins of 62 and 190 kDa (p62 and p190). In v-src-transformed Rat-2 cells, a minor fraction of GAP associates with the highly tyrosine phosphorylated p62 to form a complex that is localized at the plasma membrane and in the cytosol. In contrast, the majority of GAP enters a distinct complex with p190 that is exclusively cytosolic and contains predominantly phosphoserine. Epidermal growth factor stimulation also induces a marked conversion of monomeric GAP to higher-molecular-weight species in rat fibroblasts. The GAP-p190 complex is dependent on phosphorylation and shows reduced GAP activity. These results indicate that protein-tyrosine kinases induce GAP to form multiple heteromeric complexes, which are strong candidates for regulators or targets of p21ras.