Metabolic remodeling of the human red blood cell membrane

Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1289-94. doi: 10.1073/pnas.0910785107. Epub 2010 Jan 6.

Abstract

The remarkable deformability of the human red blood cell (RBC) results from the coupled dynamic response of the phospholipid bilayer and the spectrin molecular network. Here we present quantitative connections between spectrin morphology and membrane fluctuations of human RBCs by using dynamic full-field laser interferometry techniques. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates non-equilibrium dynamic fluctuations in the RBC membrane that are highly correlated with the biconcave shape of RBCs. Spatial analysis of the fluctuations reveals that these non-equilibrium membrane vibrations are enhanced at the scale of spectrin mesh size. Our results indicate that the dynamic remodeling of the coupled membranes powered by ATP results in non-equilibrium membrane fluctuations manifesting from both metabolic and thermal energies and also maintains the biconcave shape of RBCs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Cell Shape
  • Erythrocyte Membrane / metabolism*
  • Erythrocytes / cytology*
  • Erythrocytes / metabolism*
  • Humans
  • Temperature

Substances

  • Adenosine Triphosphate