It is believed that peach latent mosaic viroid (PLMVd) strands of both the plus and minus polarities fold into similar secondary and tertiary structures. In order to verify this hypothesis, the behavior of both strands in three biophysical assays was examined. PLMVd transcripts of plus and minus polarity were found to exhibit distinct electrophoretic mobility properties under native conditions, to precipitate differently in the presence of lithium chloride, and to possess variable thermal denaturation profiles. Subsequently, the structure of PLMVd transcripts of minus polarity was elucidated by biochemical methods, thereby permitting comparison to the known structure of the plus polarity. Specifically, enzymatic probing, electrophoretic mobility shift assay, and ribonuclease H hydrolysis were performed in order to resolve the secondary structure of the minus polarity. The left domains of the strands of both polarities appear to be similar, while the right domain exhibited several differences even though they both adopted a branched structure. The pseudoknot P8 formed in the plus strand seemed not formed in the minus strands. The structural differences between the two polarities might have important implications in various steps of the PLMVd life cycle.