A novel method is proposed for direct detection of DNA hybridization on microarrays. Optical interferometry is used for label-free sensing of biomolecular accumulation on glass surfaces, enabling dynamic detection of interactions. Capabilities of the presented method are demonstrated by high-throughput sensing of solid-phase hybridization of oligonucleotides. Hybridization of surface immobilized probes with 20 base pair-long target oligonucleotides was detected by comparing the label-free microarray images taken before and after hybridization. Through dynamic data acquisition during denaturation by washing the sample with low ionic concentration buffer, melting of duplexes with a single-nucleotide mismatch was distinguished from perfectly matching duplexes with high confidence interval (>97%). The presented technique is simple, robust, and accurate, and eliminates the need of using labels or secondary reagents to monitor the oligonucleotide hybridization.
(c) 2010 Elsevier B.V. All rights reserved.