Genetics of hypertrophic cardiomyopathy

Curr Opin Cardiol. 2010 May;25(3):205-9. doi: 10.1097/HCO.0b013e3283375698.

Abstract

Purpose of review: Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disorder, exhibits remarkable genetic and clinical heterogeneity. This manuscript reviews recent discoveries of disease-causing genes and their clinical consequences, and provides an overview of research that aims to elucidate how HCM ensues from a single-nucleotide mutation.

Recent findings: The spectrum of genes that are mutated in HCM has expanded. In combination with newly developed sequencing technologies, there are now robust strategies for gene-based diagnosis in HCM. Understanding the molecular pathophysiology of HCM has emerged from the study of genetically engineered animal models of disease, and new data indicate important roles for altered intracellular Ca²⁺ regulation and oxidative stress. Pharmacologic strategies to normalize these processes show promise in attenuating HCM in experimental models.

Summary: The current repertoire of HCM genes allows effective gene-based diagnosis, information that enables accurate assessment of disease risk in family members, and provides some insight into clinical course. From mechanistic insights gleaned from fundamental investigations of experimental HCM models, novel therapeutic targets that may provide new benefits for HCM patients have surfaced.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Calcium / metabolism
  • Cardiomyopathy, Hypertrophic / diagnosis
  • Cardiomyopathy, Hypertrophic / genetics*
  • Cardiomyopathy, Hypertrophic / physiopathology
  • Genetic Association Studies
  • Humans
  • Mutation*
  • Sarcomeres / genetics*
  • Sarcomeres / physiology

Substances

  • Calcium