Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses

Curr Opin Struct Biol. 2010 Feb;20(1):54-62. doi: 10.1016/j.sbi.2009.12.009. Epub 2010 Feb 3.

Abstract

Small molecules that bind to normally unoccupied thyroxine (T(4)) binding sites within transthyretin (TTR) in the blood stabilize the tetrameric ground state of TTR relative to the dissociative transition state and dramatically slow tetramer dissociation, the rate-limiting step for the process of amyloid fibril formation linked to neurodegeneration and cell death. These so-called TTR kinetic stabilizers have been designed using structure-based principles and one of these has recently been shown to halt the progression of a human TTR amyloid disease in a clinical trial, providing the first pharmacologic evidence that the process of amyloid fibril formation is causative. Structure-based design has now progressed to the point where highly selective, high affinity TTR kinetic stabilizers that lack undesirable off-target activities can be produced with high frequency.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amyloidosis / drug therapy*
  • Amyloidosis / metabolism
  • Animals
  • Drug Design*
  • Humans
  • Kinetics
  • Prealbumin / chemistry*
  • Prealbumin / metabolism*
  • Protein Stability / drug effects
  • Thyroxine / metabolism

Substances

  • Prealbumin
  • Thyroxine