FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice

Cell Metab. 2010 Feb 3;11(2):136-46. doi: 10.1016/j.cmet.2009.12.009.

Abstract

Aging increases oxidative stress and osteoblast apoptosis and decreases bone mass, whereas forkhead box O (FoxO) transcription factors defend against oxidative stress by activating genes involved in free radical scavenging and apoptosis. Conditional deletion of FoxO1, FoxO3, and FoxO4 in 3-month-old mice resulted in an increase in oxidative stress in bone and osteoblast apoptosis and a decrease in the number of osteoblasts, the rate of bone formation, and bone mass at cancellous and cortical sites. The effect of the deletion on osteoblast apoptosis was cell autonomous and resulted from oxidative stress. Conversely, overexpression of a FoxO3 transgene in mature osteoblasts decreased oxidative stress and osteoblast apoptosis and increased osteoblast number, bone formation rate, and vertebral bone mass. We conclude that FoxO-dependent oxidative defense provides a mechanism to handle the oxygen free radicals constantly generated by the aerobic metabolism of osteoblasts and is thereby indispensable for bone mass homeostasis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apoptosis
  • Cell Cycle Proteins
  • Cells, Cultured
  • Forkhead Box Protein O1
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors / genetics*
  • Forkhead Transcription Factors / metabolism*
  • Gene Deletion
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Osteoblasts / cytology
  • Osteoblasts / metabolism*
  • Oxidative Stress*
  • Transgenes
  • Up-Regulation

Substances

  • Cell Cycle Proteins
  • FOXO3 protein, human
  • Forkhead Box Protein O1
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors
  • FoxO3 protein, mouse
  • FoxO4 protein, mouse
  • Foxo1 protein, mouse