High molecular weight glutenin subunits (HMW-GS) from 60 germplasms including 30 common wheat cultivars and 30 related species were separated and characterized by a suite of separation methods including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reversed-phase high-performance liquid chromatography (RP-HPLC), high-performance capillary electrophoresis (HPCE), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Comparative analysis demonstrated that each methodology has its own advantages and disadvantages. The main drawback of SDS-PAGE was its overestimation of molecular mass and incorrect identification of HMW-GS due to its low resolution. However, it had the advantages of technical simplicity and low requirements of equipment; thus, it is suitable for large-scale and high-throughput HMW-GS screening for breeding programs, especially when the glutenin composition is clear in the breeding material. MALDI-TOF-MS clearly expressed many technical advantages among the four methods evaluated, including high throughput, high resolution, and accuracy; it was, however, associated with high equipment cost, thus preventing many breeding companies from accessing the technology. RP-HPLC and HPCE were found to be intermediate between SDS-PAGE and MALDI-TOF-MS. Both RP-HPLC and HPCE demonstrated higher resolution and reproducibility over SDS-PAGE but lower detection power than MALDI-TOF-MS. Results demonstrated that MALDI-TOF-MS is suitable for analyzing HMW-GS for routine breeding line screening and for identifying new genotypes.