CD317/Bst-2/tetherin is a host factor that restricts the release of human immunodeficiency virus type 1 (HIV-1) by trapping virions at the plasma membrane of certain producer cells. It is antagonized by the HIV-1 accessory protein Vpu. Previous light microscopy studies localized CD317 to the plasma membrane and the endosomal compartment and showed Vpu induced downregulation. In the present study, we performed quantitative immunoelectron microscopy of CD317 in cells producing wild-type or Vpu-defective HIV-1 and in control cells. Double-labeling experiments revealed that CD317 localizes to the plasma membrane, to early and recycling endosomes, and to the trans-Golgi network. CD317 largely relocated to endosomes upon HIV-1 infection, and this effect was partly counteracted by Vpu. Unexpectedly, CD317 was enriched in the membrane of viral buds and cell-associated and cell-free viruses compared to the respective plasma membrane, and this enrichment was independent of Vpu. These results suggest that the tethering activity of CD317 critically depends on its density at the cell surface and appears to be less affected by its density in the virion membrane.